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LEVELS OF POSITIVE DEFINITE TERNARY QUADRATIC FORMS 

J. LARRY LEHMAN 

ABSTRACT. The level N and squarefree character q of a positive definite 
ternary quadratic form are defined so that its associated modular form has 
level N and character Xq . We define a collection of correspondences between 
classes of quadratic forms having the same level and different discriminants. 
This makes practical a method for finding representatives of all classes of ternary 
forms having a given level. We also give a formula for the number of genera of 
ternary forms with a given level and character. 

INTRODUCTION 

In this article, we consider some questions concerning the classification of 
positive definite ternary quadratic forms. Our motivation is the connection be- 
tween quadratic forms and modular forms which is given in the theorem below. 
We first recall some notation and terminology concerning modular forms. 

Define a symbol (a/b) for a, b E Z by the following conditions: 
(1) (a/b) is the Legendre symbol if b is an odd prime. 
(2) (a/2) = (_1)(a2_1)/8 if a is odd. 
(3) (a/-1)=1 if a?O, (a/-1)=-1 if a<O. 
(4) (a/b) = 0 if gcd(a, b) > 1, (1/0) = 1, (a/0) = 0 if a $ 1. 
(5) (a/bc) = (a/b) * (a/c) for all b, c E Z. 

If t is a nonzero integer, define a function Xt on the integers as follows: Let 
t = qr2 with q squarefree. If q _ 1 (mod 4), let D = q. If q _ 2, 3 
(mod 4), let D = 4q. Then Xt(n) = (D/n) for all n E Z. The function Xt is 
a quadratic Dirichlet character with conductor IDI [1 1]. 

Let k be an integer, N a positive integer (divisible by 4 if k is odd), and 
X a character modulo N. Let Fo(N) be the subgroup of SL2(Z) consisting 
of all [c d] with c -0 (mod N). A modular form 0 is said to have weight 
k/2, level N, and character X if for all y = [d] E Fo(N) and all z E C with 
Im(z) > 0, 

az_ +b X(d) * (cz + d)k/26 *(Z) if k is even, 
'cz+dJ d X(d) * j(y, Z)k . 6(Z) if k is odd. 

Here, j(Y, z) = ed-jXc(d)(cz + d)1/2, where Ed = 1 or i as d _ 1 or 3 
(mod 4). Denote the vector space of all such modular forms as Mk/2(N, X), 
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and its subspace of cusp forms as Sk/2(N, X). (See [12] or [7] for more back- 
ground on modular forms, particularly those of half-integral weight.) 

Theorem (Shimura [12]). Let f(xl, ..., x,) be a positive definite quadratic 
form having integer coefficients. Let A be the n x n matrix 

F 2f1 
L Xi0Xj 

Define N to be the smallest positive integer so that NA-1 is an even matrix, that 
is, has integral entries, and even integers on the main diagonal. Let 6(f) = Of(z) 
be defined by 

Of (Z) E qf(ml, -.. m) 

where q = e27riz, and the sum is taken over all n-tuples (m1, ...I , m) in Zn/. 
Then 0(f) EMn/2(N, Xd), where d = det(A) if nO0 (mod 4), d=- det(A) 
if n _ 2 (mod 4), and d = det(A)/2 if n is odd. 

Remarks. This theorem is a special case of Proposition 2.1 in [12]. Shimura's 
proposition generalizes results of Hecke and Schoeneberg in the case when n is 
even, and of Pfetzer when n is odd (see [12] for references). It is not hard to 
see that det(A) is even if n is odd, so the discriminant d of f is an integer 
in each case. In saying that Xd is the character of 0(f), we mean that 0(f) 
has character X such that X(a) = Xd(a) if gcd(a, N) = 1. (By definition, 
X(a) = 0 if gcd(a, N) > 1.) Suppose that g = cf, with c a positive integer. 
Then 6(g) has weight n/2 and level cN. Its character is Xd if n is even, 
Xcd if n is odd. As a power series in q, 0(g) is the same as 0(f) with all 
exponents multiplied by c. So we can restrict our attention to the case where 
f is primitive, that is, where the greatest common divisor of the coefficients of 
f is 1. Finally, we have that if fi and f2 are in the same genus of forms (see 
?3), then 0(fi) - 6(f2) E Sn/2(N, Xd) [10]. 

Attempts have been made to use quadratic forms to describe a space of mod- 
ular or cusp forms of a given weight, level, and character. In formal terms, this 
can be considered as a special case of the "basis problem," which was success- 
fully dealt with in [5] in the case in which the weight is an integer k > 2. Serre 
and Stark [11] found bases for all spaces of forms of weight 1/2, using theta 
series, which may be defined in terms of quadratic forms. In [8], the author 
employed quadratic forms to construct a basis for S3/2(196, X7), in order to 
fully compute the effects of the Hecke operators on this space, and the Shimura 
correspondence on associated eigenforms. Obviously, it would be helpful in 
this application to be able to find all primitive quadratic forms which lead to a 
particular value of the level N. If n = 1 , then this is trivial, as there is only one 
primitive form in that case. In the case of binary forms (n = 2), this problem 
is the same as that of finding all primitive forms of a given discriminant. For 
if f(xi, x2) = alixl + a12xIx2 + a22x 2 is primitive, then 

A = 2al a12] and A1 = 1 F 2a22 -a12] [ al 2 2a22- det(A) [ -al 2 2a11] 

leading to the conclusion that N = det(A) in every case. 
When we look at ternary forms (n = 3), however, this is no longer the case. 

For example, let 
f(XI, X2, X3) = Xj2 + 2X2 + 8X2 



LEVELS OF POSITIVE DEFINITE TERNARY QUADRATIC FORMS 401 

and 
g(XI, X2, X3) = 3x2 + 11X2 + 11X3-1 0X2X3- 2xlX3-22x1X2 

Then 0(f) and 0(g) are both weight 3/2 forms of level 32 and trivial character. 
But f has discriminant 64 while that of g is 1024. 

This example illustrates another point. Extensive tables of positive definite 
ternary quadratic forms, grouped by discriminant, have been compiled. In par- 
ticular, the tables of Brandt and Intrau [1] list (in over 200 pages) all reduced 
ternary forms with d < 1000. But, as we see above, a modular form of rela- 
tively small level may arise from a quadratic form with a large discriminant. 

In this article, we will consider the following question: Is it possible to find all 
primitive, positive definite, ternary quadratic forms whose associated modular 
forms possess a particular level? We will show that this is possible in general, 
and illustrate a practical method for doing so for a large number of values of 
the level. 

1. TERNARY QUADRATIC FORMS 

The literature on quadratic forms is extensive and highly developed. We 
will take an elementary approach to the subject, focusing narrowly on positive 
definite ternary quadratic forms which are defined over the integers. However, 
our approach is unique in that it stresses the level throughout as the invariant 
of importance for a quadratic form. 

Let f be a ternary quadratic form with integer coefficients, given by the 
equation 

(1) f(x,y, z) =ax2+by2+cz2+ryz+sxz+txy. 

Unless otherwise stated, we assume that f is positive definite (that is, that 
f(x, y, z) > 0 for real numbers x, y, z unless x = y = z = 0) and prim- 
itive (gcd(a, b, c, r, s, t) = 1 ). (Note that we do not follow the "classically 
integral" definition, which requires that r, s, and t be even integers. Some 
results quoted below, particularly those of Dickson [4], have been restated to 
account for this difference in definitions.) We will also denote f by the array 

{a b c f~a c 

f r s t . 
Define the matrix of f to be 

~2a t s~ 
A=Af= t 2b r]. 

LS r 2cj 
We will say that a 3 x 3 matrix is primitive if it is the matrix of a primitive 
ternary form. Define the discriminant of f to be 

_det(A) 2 2_C2 d=df = 2 =4abc+rst-ar -bs2-ct2. 

Let Aij be the i, j-cofactor of A. That is, 

All = 4bc - r2, A23 = st-2ar = A32, 

A22 = 4ac - s2, A13 = rt-2bs = A31, 

A33 = 4ab- t2, A12 = rs -2ct = A21. 
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Define the divisor of f to be the positive integer 
m = mf = gcd(All, A22, A33, 2A23, 2A13, 2A12). 

Let a = All/m, fi = A22/m, y = A33/m, p = 2A23/m, a = 2A13/m, and 
T= 2A12/m. Define the reciprocal of f to be the ternary form 

(2) q(x, y, z) = aX2 + fly2 + YZ2 + pyz + oxz + Txy. 

It is clear that q is a primitive positive definite form. 
The matrix of q is 

02a T a 2 [Al A21 A31 2det(A)Al 
AO T 2fl6 A12 A22 A32 A- 

A1 = 
p y A13 A23 A33 m f 

by the usual cofactor results. So AO, = 4dA-1 . Notice that m divides 4d 
because 

4d = 2 det(A) = 4a(Al 1) + t(2A12) + s(2A13). 
Define the level of f to be the positive integer N = Nf = 4df /mf . Note that, 
as in the introduction, N is the smallest positive integer such that NA-1 is 
even. We can also describe the level of f as the unique positive integer N so 
that NA-1 is a primitive matrix. 

Now consider the definitions above applied to the primitive form 0. Since 
AO, = NfA1-1 , the discriminant of q is 

det(AO) N3 d A N 
do 2 - f det(Af 

Let meo be the divisor of 0, and let No, = 4dol/mo, be its level. Let F be the 
reciprocal of 0. Then 

AF = N?,A?1 = N, (NfA1)1 - N Af . 

But F is a primitive form by the definition of the reciprocal. So AF is a 
primitive matrix, as is Af. Clearly, the only way in which a positive scalar 
multiple of a primitive matrix can be primitive is if the scalar is 1. Therefore, 
f is the reciprocal of q. Furthermore, we have the following important fact. 
Theorem 1. Let f be a primitive, positive definite, ternary quadratic form, and 
let q be its reciprocal. Then f and q have the same level. 

Fix the following notation now. Considered as constants depending on f 
denote df by d, mf by m, do, by 3, mio by ,u and the common value of 
Nf and No, by N. Each of these quantities is a positive integer. 

Ternary forms f and g are said to be equivalent, f , g, if there is a 
unimodular matrix U = [uij] so that Ag = UAf Ut. (That is, U has integer 
entries and det(U) = ? 1; Ut is its transpose.) In this case, the coefficients of 
g can be expressed explicitly in terms of f as follows. For i = 1, 2, 3, let 
ui = (uil, ui2, u3) . Suppose that g(X1, X2, X3) = Ei<j aijxjxj . Then 

(3) a11 = fui) if i= j, 

(ui + u) - f(u) - f(uj) if i 7 j. 
Equivalent forms are said to belong to the same class. Clearly, if f - g, then 
df = dg. 
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Proposition 1. The level of a form is a class invariant. That is, if f r g, then 
Nf = Ng. 

Proof. If some prime divides each coefficient of f, then by equation (3) it 
divides each coefficient of g. It follows that f is primitive if and only if g is 
primitive. Now NfA-1 = VAO?,Vt, where V = (Ut)-1 is unimodular. Since q 
is a primitive form, NfA -I must be a primitive matrix. But Ng is the unique 
positive integer so that NgAg 1 is primitive. Therefore Nf = Ng. 0 

Corollary 1. If f and g are equivalent, then their reciprocals are equivalent as 
well. 

From the equations c5 = N3/4d, m = 4d/N, and M = 45/N = N2/d, we 
see that m, Mu and c5 are also class invariants. Notice also that my = 4N, 
m 2u = 16d, and my2 = 1665. From these latter two equations we can see that 
if m is odd, then 16 1 M , and if M is odd, then 16 1 m . But m is odd if and 
only if one of All, A22, A33 is odd. This is the case if and only if one of r, 
s, t is odd. If not, then it is easy to see that 4 | m. Similarly, either M is odd 
or 4 1 M . In any case, we see that 16 1 m y and thus that 4 | N . 

Now suppose that f is a ternary form having a given level N. What can be 
concluded about the discriminant d of such a form? First note that if p I d, 

then p I yd, so p I N2 and p I N. So d cannot be divisible by any prime 
which does not divide N. Let p be an odd prime and suppose that p9 11 N 
(that is, N is divisible by pg, but not by pg+l ). Suppose that ph 11 d. From 
the fact that m = 4d/N and y = N2/d are integers, we see that g < h < 2g. 
Suppose that 29 11 N (so that g > 2 ) and that 2h 11 d. We can now conclude 
that h + 2 > g and 2g > h, that is, g - 2 < h < 2g. But as noted in the 
previous paragraph, m is either odd or divisible by 4, and likewise for Y. So 
we see that h $ g - 1 and h $ 2g - 1 in this case. (If f is a quadratic form in 
an even number of variables, then it is known that N and d are divisible by 
the same prime factors [9]. Note that for ternary forms, we may have d odd 
although N is even.) 

There is an additional restriction on discriminant values. First note the fol- 
lowing result which we will use on several occasions. 

Proposition 2 [4,. pp. 12-17]. Let f be a ternary form. Let m be its divisor 

and y be the divisor of its reciprocal. Then f is equivalent to a form (a b 

having reciprocal (,6 ),so that a and y are relatively prime to each other 

and to my. 

Lemma 1. There is no primitive ternary form f with divisor m, whose reciprocal 
has divisor y, so that m and y are both squares and either m or y is odd. 

Proof. Suppose that f is such a form. We may assume that f and its recip- 
rocal are as given in Proposition 2. In particular then, a and y are odd and 
positive, and so we may consider the Jacobi symbols (my/a) and (Ya/y). By 
the definition of the reciprocal, we have that my = 4ab - t2 and ya = 4fly _p2. 

Since m and y are squares, it follows that 

(a) (m ) ( 4ab -) (a) 
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and 

(a) =(/) =(4plyp2) ( 

So 

ay) () 
= 

a) 1 

and by Quadratic Reciprocity, 

(-1 )(a- 1)(y- 1)/4 =(1 )(a- 1)/2 (- 1)(Y-1/2 

But if m is odd (and a square), then y = my = 4ab - t2 = -1 (mod 4). Then 
it follows that 

(-1 (a-01)2 
- 

_ (-1)(a- 1)/2 

which is impossible. There is a similar contradiction if M is odd. So f cannot 
exist under these conditions. al 

The divisors m and M are both squares if and only if N = mM/4 and 
d = mN/4 are both squares. We summarize the above results as: 

Theorem 2. Let f be a primitive, positive definite, ternary quadratic form with 
level N and discriminant d. Suppose that 

(4) N = 2nOpn pnk 

is the prime factorization of N. Then no > 2 and d is of the form 

(5) d = 2 p1 k 

with the following restrictions on exponents: 

(1) do = no-2, do = 2no, or no < do < 2no -2, and 

(2) for 1 < i<k, ni <di <2ni. 

Furthermore, if ni is even for 0 < i < k, then either no < do < 2nO - 2, or di 

is odd for some 1 < i < k. 

In particular, we see that given a value N, there is only a finite number of 
values d so that a ternary form could have level N and discriminant d. These 
values are explicitly calculable in terms of N. (In the following sections, when 
we write that N and d are given by equations (4) and (5), we will assume 
that they satisfy the conditions on exponents which are given in Theorem 2. 
In ?3, we will see that there is in fact a ternary form for every level N and 
discriminant d which are allowed by this theorem.) 

2. CONSTRUCTION OF ALL FORMS OF A GIVEN LEVEL 

Given a value d, it is possible (in theory) to find a representative of each 
class of primitive, positive definite, ternary quadratic forms having discriminant 
d. We sketch the method here. 

Proposition 3 [4, pp. 155-179]. Let f be a ternary form given by equation (1). 

Say that f is reduced if the following are true: 

(1) a<b<c; 
(2) r, s, and t are all positive or all nonpositive; 

(3) a > Itl; a > IsI; b > Irl; 
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(4) a+b+r+s+t>O; 
(5) a=t?' s<2r; a=s?* t<2r; b=r= * t<2s; 
(6) a=-t=es=O; a=-s=:t=O; b=-r=at=O; 
(7) a+b+r+s+t=O0? 2a+2s+t<0; 
(8) a=b =Irl < Is; b=c ? sl < ItI. 

Then every primitive, positive definite, ternary form is equivalent to one and 
only one reduced form. Also, if f is reduced and has discriminant d, then 
d/4 < abc < d/2. 

Remark. The above criteria for a reduced form were first provided by Eisen- 
stein. Other definitions are possible.' In particular, a form which is reduced 
by this definition is not necessarily "Minkowski reduced," a definition which 
requires in part that r + s + t < a + b in all cases [3, p. 396]. 

This means that there is only a finite number of possibilities for the coeffi- 
cients of a reduced form having a given discriminant. In particular, if f is a 
reduced form, with discriminant d, given by equation (1), then 

1 < a < ,d/2, a < b < d/2a, max(b, d/4ab) < c < d/2ab, 

and either 
-b<r<O, -a<s<O, -a<t<O, 

or 
1 <r<b 1 <s<a, 1 <t<a. 

Starting with a given value of N, we could use Theorem 2 to find the finite 
collection of potential discriminants for forms of level N. For each such dis- 
criminant d, the finite collection of possible coefficients could be tested. Thus, 
it is theoretically possible to find all reduced forms of a given level. Of course, 
the larger d is, the more potential coefficients have to be tested. Since for a 
given N, a corresponding d might be as large as N2, this direct method could 
become unworkable for a relatively small value of the level. However, we will 
note several results which allow us to restrict this search process, thus making 
it much more practical. 

First note that, in some cases, we can place additional restrictions on the 
potential coefficients of forms, owing to the fact that we want only forms of a 
specific level. Suppose that f, given by equation (1), is a reduced form of level 
N and discriminant d, having reciprocal q as in equation (2). Let m = 4d/N 
and ,u - N2/d be the respective divisors of f and 0. Then: 

(1) If m is even, then r, s, and t must also be even. This is because m 
is the greatest common divisor of a collection of integers including 4bc- r-2 

4ac - 52, and 4ab - t2 . 
(2) If ,u is odd, then there are restrictions on the coefficients a, b, and c. 

We know that ,ua = 4fly - p2. If a is even, then p is even, and so 4 1 ,ua and 
4 1 a. If a is odd, then p is odd, and ,ua - _p2 = -1 (mod 4). So either 
a -0 or a _ -,u (mod 4). The same is true with b or c in place of a. 

(3) Since m < my = 4ab- t2 < 4ab, we have that b > m/4a. (It is worth 
noting that then we have c < d/2ab < 2d/m = N/2. Thus N/2 is an upper 
limit for the absolute values of the coefficients of a reduced form of level N, 
independent of its discriminant.) 



406 J. L. LEHMAN 

More importantly though, we may use a collection of functions between 
classes of forms having a given level to cut down on the number of discriminants 
for which this coefficient-testing process must be carried out. Let C(N, d) de- 
note the set of all classes of positive definite ternary forms having level N and 
discriminant d. If f is a ternary form, let 7 denote the class to which f 
belongs. Our next theorem restates some earlier results (Theorem 1 and Corol- 
lary 1). 

Theorem 3. There is a one-to-one correspondence between the sets C(N, d) and 
C(N, c), where c5 = N3/4d. This correspondence is provided by the mapping 
f |-* q, where q is the reciprocal of f . 

Since d and c5 are inversely related, we can immediately eliminate the dis- 
criminants associated with N for which d > 2v/'7Th. The following result 
allows us to restrict our attention further. 

Theorem 4. Let N and d be given by equations (4) and (5). Suppose that 
p9 11 N and ph II d for some odd prime p . Write d as phd'. Then there is a 
one-to-one correspondence between C(N, phd') and C(N, p3g-hd'). 

Before we describe this correspondence, we need the following lemma. 

Lemma 2. Let f be a positive definite, primitive ternary form with level N and 
divisor m . Suppose that pi Il N and pi ll m for some odd prime p and positive 
integer i. Then f is equivalent to aform (abct) with pi 1l a, pi I s and t, 
pj lb and r, and ptc. If O< j<i, then we can assume that p' lb. 
Proof. By Proposition 2, we may assume at the start that f has reciprocal 
( p 6 i) with y not divisible by p. Let g = gcd(o, p, 2y), so that p t g. We 
can form a unimodular matrix U whose first row is [ ojg p/g 2y/g ]. Let 
A be the matrix of f . Then the first row of UA is [0 0 N/g]. (This can 
be seen from the fact that the third row of A-1 is [aIN p/N 2y/N].) So 
then, if U = [uij], the first row of UAUt is [2yN/g2 u23N/g u33N/g]. 

But UAUt is the matrix of a form (a b c) which is equivalent to f. We can 

see that a = yN/g2 s- =u33N/g, and t = u23N/g. Since pi 1I N. p g, and 
p t y, it follows that pi I a and that pi I s, t. 

Since f is primitive, one of the remaining coefficients must be relatively 
prime to p. It is easy to see that 

a b c a c b a b+c+r cst 
Vr s t J r t s c 2+ r s s + tJ 

so we may assume that either b or c is not divisible by p without affecting 
the previous results concerning a, s, and t . If j = 0, assume that p t c . The 
proof is complete in that case. 

If j > 0, assume that p t b. Let g = gcd(-r, 2b), so that p t g. We can 
form a unimodular matrix 

U 
l 
0 ol 21g rr_ I n 1.Ah, 
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for some integers u and v. If A is the matrix of (a b c) ,then UAU1 is the 

matrix of (a' b" ' with a' = a, s' = sv + tu, and t' = s(2b/g) + t(-r/g) (so 
that our previous results hold for a', s', and t'), and with 

bl = b(4bc - r2)/g2 and r' = v(4bc - r2)/g. 

The divisor m is the greatest common divisor of a collection of integers which 
includes 4bc - r2, and it is easy to see that each of the other integers is divisible 
by pi. So we see that pi b', r', and if j < i, then pi /l b'. Since f is 
primitive, p cannot divide c'. So the proof of Lemma 2 is complete. U 

Proof of Theorem 4. Let f E C(N, phd'). Since m = 4d/N, we may, by 
Lemma 2, assume that 

( pga ph-9b c 
f= tph-r pgS pgt} 

with a, b, c, r, s, and t integers, p t ac . Let 

( a p2g-hb p9C 

jP= pgr pgS p2g-htJ 

Notice that fp is a primitive form. We will show that qi: C(N, Nh d') 
C(N, p3g-hd') defined by y/(f) = fp is a one-to-one correspondence. (We 
may also denote V by yp or V*. 

If Af and AfP are the matrices of f and fp , respectively, then 

p 0 00 

[0g/ 

o 

g/2] 
Afp = PAfP, where P = 0 p(3g-2)2 0h. 

P~~ ~ pg12 

So 

dfp = df det(P)2 = phdp3g-2h - p3g-hd, 

To show that Nfp = Nf, note that NfA-' = P-1A4P-1, where 0 is the 
reciprocal of f. With f as given, it is not hard to see that 

+ pgP pgU pg Ta 

with a, /1, y, p, a, and X integers, p tafly. Then P-IAOP-I isthe matrix 
of 

( pga ph-gfl y 
tph-gp pga P9T) 

which must be primitive. So NfAj7' is primitive, and Nfp = Nf by definition. 

Thus fp is an element of C(N, p3g-hdl). 
Next we show that qi is a well-defined function. Suppose that f and F are 

representatives of the same class in C(N, phd'), and that 

= (ph-gr pgS pgt and F Ph -R p S pT 

with p t acAC, and p t bB if g < h < 2g. So AF = UAfUt for some 
unimodular matrix U. We want to show that fp- Fp. We know that AFP = 
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PAFP and Afp = PAfP, so AFP = (PUP-l)Afp(PUPl)t (since p - pt). 
Clearly, det(PUP-1) = det(U) = ?1. If we can show that the entries of 
PUP-' are integers, then it is unimodular, and fp and Fp are equivalent. 

If U = [uij], then one can see that 

ull U12ph2g U13p-g 1 
PUP-1 = 21p2gh U22 U23Pg- , 

U31Pg U32p hg U33 J 
so we would like to show that p2g-h I U12, pg I U13, and ph-g I U23. This can 
be seen by looking closely at the implications of the equation AF = UAf Ut, as 
given in (3) above. For example, we have that C = f(U31, U32, U33), so that 
C _ cu~33 (mod phg) If h > g, it follows that p t U33. Then one can show 
that 

phR _2cU33U23 and pg5=2cu33u13 (modph) 

So ph-g I u23 and ph-g I U13 . If h = 2g, then this is all that we need to show. 
Suppose that 2g > h > 3g. We then have that 

ph~ ph U2~ 2+c~ h ph -9b2 (mod p9), ph -B _ 9 phg222 + CU23 + ph grU22U23 _p b22(mdp) 

since 2(h - g) > g. Since in this case p t bB, it follows that p t u22. Now 

p9T = 2ph 9bu22u12 (mod pg), 

so we see that p2g-h I U12. Finally, 

pS =_ 2CU33U13 (mod pg), 

so pg I u13. So PUP-1 is unimodular if 2g ? h> g. 
Now if h < 3g, consider the reciprocals of f and F, say 0 and (. If 

AF = UAf Ut, then AD = VAO Vt with V = (U-')tI. We can show, by methods 
similar to those above, that P-I VP is unimodular. But then 

(P-1 VP)-, = P-1 V-1P = P-l UtP = (PUP-,)t 

is unimodular, so PUP-1 is unimodular. 
So ,h is a well-defined function from C(N, ph d') to C(N, p3g- d') . But 

then it is clear that V 3g-h provides an inverse for ,h . So each such function 
is a one-to-one correspondence and the proof of Theorem 4 is complete. 0 

There is a similar result for p = 2. 

Theorem 5. Let N and d be given by equations (4) and (5). Suppose that 
29 11 N and 2h 11 d. Write d as 2hd'. Then there is a one-to-one correspondence 
q/ between C(N, 2hd') and C(N, 23g-h-2 d'). This correspondence is defined 
by yi(f) = f2, where we may assume that f is as given below and then define 
f2 accordingly: 

If h = g - 2, then 

29-2a b c a 29b 29c 
f r 29-1s 29-1tJ f2= t2r 29s 2gtJ 

If g< h< 2g-2, then 

2g-2a 2 h-gb c (a 22g-h-2b 29-2c\ 
f 2h-g+lr 2g-15 2g-1t f2 2 g-r 2g-15 22g-h-it). 
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If h=2g, then 

29a 29b c A a b 29-2 c 
f (2r 2s 29tJ ' J2 2-r 2-1s tj 

The proof of Theorem 5 is similar to that of Theorem 4 (and Lemma 2), 
with the extra care which the prime 2 usually requires. For the computational 
purposes which are our focus, however, we can see that the effect of these cor- 
respondences may be more easily obtained by the use of the reciprocal corre- 
spondence of Theorem 3. So we will omit the proof of this theorem. 

We combine and summarize the results of this section as: 

Corollary 2. Let N and d be given by equations (4) and (5), and let e = 
2eop* pek . Then there is a one-to-one correspondence between C(N, d) and 
C(N, e) iffor all 1 < i < k, ei = di or ei = 3ni - di, and if eo = do or 
eo = 3nO - do - 2. Thus, representatives of all classes of ternary forms of level 
N can be obtained by applying a sequence of the functions yip to the classes in 
C(N, d) with do < 3no- 1, and di < ?ni for 1 < i < k. 

For example, consider N = 60 = 22 i 3. 5. By Theorem 2, there are twelve 
potential discriminants for ternary forms of level 60. But we need only find the 
reduced forms for two of them: d = 15 and d = 60. Applying the map Vi3 
to the set C(60, 15) gives us the entire set C(60, 45). Applying tv5 to these 
two sets yields all of C(60, 75) and C(60, 225). Taking the reciprocals of all 
of these forms gives us all of the elements in C(60, d) for d = 3600, 1200, 
720, and 240. (We could obtain the same sets by applying the map Yv2 at this 
point.) Applying TV3 to C(60, 60) gives us all of C(60, 180). We may take 
reciprocals of those forms to obtain all forms in C(60, 900) and C(60, 300). 
Thus, we have representatives (but not in general the reduced forms) of all 
classes of ternary forms with level 60. Note that if N/4 is squarefree, then 
only two discriminant values, d = N14 and d = N, need to be considered. 

The process outlined here can be effectively computed for many values of 
N. Using this method, along with an algorithm for finding the reduced form 
in the class of a given positive definite ternary form, the author has found all 
reduced forms with level N < 1500, and all with N < 4000 for which N/4 is 
squarefree (349,186 forms in all). In Table 1 in the supplement to this issue, we 
present a small part of these results-the reduced forms with level N < 100. 
Note that in that table, the forms are ordered so as to preserve the effect of the 
y-maps defined above. That is, suppose that p9 11 N and that d = phd' with 
gcd(p, d') = 1. If the forms listed to the right of d in Table 1 are in order 
fiA ... , f,, then the forms listed to the right of d1 = p3g-h d (p3g--2d', if 
p =2 ) are in order vp (fi ), . .. , tvp (fn).f 

3. LEVELS AND GENERA 

In this section, we return to the application mentioned in the introduction, 
that is, the relation between (ternary) quadratic forms and (weight 3/2) modular 
and cusp forms. We first consider another classification of quadratic forms. 
Two integral quadratic forms are said to be semi-equivalent if they are equivalent 
over the p-adic integers for all primes p, and are equivalent over the real 
numbers (see [3] or [6] for more details). Semi-equivalent forms are said to be 
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in the same genus (p1. genera) of forms; Equivalent forms are semi-equivalent, 
so we may speak of a class of forms as belonging to a genus. 

For ternary forms, semi-equivalence can be tested as follows. Let f be a 
ternary form and q its reciprocal, as given in equations (1) and (2) above. Let 
m and 41 be the divisors of these forms. We can assume, by Proposition 2, 
that a and y are relatively prime to my. If p is an odd prime and p j m, 
define a symbol (f/p) to be the Legendre symbol (a/p). Similarly, if p m, 
define (q/p) to be (y/p). If 16 | m, let (f/4) = (_l)(a-1)/2 . If 32 { m, let 

(fl/8) = (- l)(a2_1)/8 . Define (X/4) and (X/8) analogously if yu is divisible by 
16 or 32. We will refer to these symbols (whichever ones are defined) as the 
collection of genus symbols for f . 

Proposition 4 [3, pp. 378-384; 4, pp. 51, 52]. Let f and g be primitive, positive 
definite ternary forms. Then f and g are in the same genus if and only if they 
have the same discriminant and level (and thus the same values of m and A) 
and the same collection of genus symbols. 

Remarks. The definition of genus symbols given here is adapted from the def- 
inition of characters in [4]. That genus symbols are well defined can be shown 
directly; the proof is omitted. Proposition 4 can be established by showing 
that two ternary forms have the same genus symbols if and only if they have 
the same p-adic symbols as defined in [3]. It can also be shown directly that 
semi-equivalent forms have the same discriminant and level. Note that by 
Proposition 4, it is obvious that the reciprocals of semi-equivalent forms are 
semi-equivalent. Similarly, one can show that the maps of Theorems 4 and 5 
are genus-preserving, that is, if two classes of forms are in the same genus, then 
so are t/p applied to those classes, as defined. 

We note also a result on the existence of forms having a particular collection 
of genus symbols. 

Proposition 5 [6, Theorem 46]. Let m = 2mOp MI ... plk and = 2op ... pyk 

be two integers subject to the conditions that mo $A 1, ju :$ 1, and mo + Ho > 4. 
(Each pi is a distinct odd prime; we do not assume that mi and As are both 
positive.) Let h (respectively i/) equal +1 as m/2mo (respectively 4u/2o) is 
congruent to ? I (mod 4). For i = 1, ... , k, let the symbols (f/pi) and (X/pi) 
be chosen independently as ?1; similarly choose (f/4), (f/8), (q/4), and 
(0/8). 

Then there is a primitive, positive definite ternary form f with reciprocal b 
so that f has discriminant d = m 2,/ 16, level N = mi/4, and genus symbols 

() if mi >OS, (4 if mo >45 (8- if mo > 5, 

() if yli > O. (0 if go > 45 (0 ifyo > S. 

if and only if the following conditions hold: 

(6) (-) (-1)((I))((V ) 1 
-1) ((f14)+r1) ((014)+h)14_ (1 )(h+ 1) ( l+ 1)/4 
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and 

(7) (')=-h if mo = 0, (f)=-II if go = O. 
Remarks. The notation is again adapted from that of Dickson [4, pp. 51-54]. It 
can be shown directly, by methods similar to those of Lemma 1, that conditions 
(6) and (7) hold for any ternary form f. (Lemma 1 is in fact a special case 
of Proposition 5.) The existence of ternary forms subject to these conditions 
follows from Theorem 46 in [6]. 

If f is a positive definite ternary quadratic form of level N and discriminant 
d, then (3(f), as defined in the introduction, is in M3/2 (N, Xd). Recall that 
Xd , a Dirichlet character modulo N, depends only on the squarefree part of d . 
In keeping up the connection between modular forms and quadratic forms, we 
will say that a ternary form f has character q if d = qr2 and q is squarefree. 
If f has level N, its character is a squarefree divisor of N/4. 

If fi and f2 are equivalent forms, then 0(fi) = 0(f2). Let c = cq(N) be the 
number of classes of ternary forms having level N and character q. We thus 
have c forms in M3/2(N, Xq) . These forms might not be linearly independent, 
but c provides an upper limit on the number of independent modular forms 
which arise directly from quadratic forms. 

If fi and f2 are semi-equivalent ternary forms of level N and character q, 
then 0(fi) - O(f2) is in S3/2(N, Xq) . Let g = gq(N) be the number of genera 
of ternary forms with level N and character q. Of course, g < c in all cases. 
Suppose that a genus of forms contains n classes, say with fi, f2, ... , fn as 
class representatives. Then 0(fi) - 0(f2), ... , 0(fi) - 0(fn) are cusp forms 
which might be independent. Any other difference, though, is easily seen to be 
a linear combination of these n - 1 forms. Thus there is a maximum of n - 1 
linearly independent cusp forms arising directly from this genus. 

Now suppose that the c classes of level N and character q are partitioned 
into the corresponding g genera so that the first genus contains cl classes, the 
second genus contains c2 classes, and so on. Then the maximum number of 
linearly independent cusp forms which can be constructed from these classes is 

g g 
(Cl - )(C2- l+ + (C9 L) ci -LI C- g. 

i=1 i~1 

Let sq(N) = cq(N) - gq(N) . 
We can calculate gq (N) for all values of N and q. First let g(N, d) denote 

the number of genera of forms of level N and discriminant d. 

Lemma 3. Let N and d be given by equations (4) and (5). For 1 < i < k, let 

I if di = ni or di = 2ni, 
ri 

2 if ni < di < 2ni. 

Let r = rl + ***+ rk. Then g(N, d) = c * 2r, where c is defined as follows: 
(I) If N and d are both squares, then 

1 if 2no-4<do no+2, 

c= 4 ifno+4<do<2no-6, 
12 otherwise. 
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(II) If N and d are not both squares, then 

(1/2 if no=2, do=0or4, 
1 if no=2, do=2; no= 3, do= 3 or4; no=4, do= 5, 

C 3/2 if no = 4, do = 4 or 6, 
2 if no = 5, do = 6 or7; no = 6, do = 8. 

If no and do are not among these exceptional cases, then 

(1 ifdo=no-2or2no, 

3 if do =no or2no -2, 
c= 4 if do=no+1, no+2, 2no-4, or2no-3, 

8 ifno+3<do<2no-S. 

Proof. We want to count the number of different collections of genus symbols 
which are allowed by conditions (6) and (7) of Proposition 5. Notice that in 
that statement, some symbols are defined, and may play a part in equation 
(6), which are not part of the collection of genus symbols. We will say that 
a symbol is "relevant" if it is in fact a genus symbol. For example, (flpi) is 
relevant if ni < di, and (+/pi) is relevant if di < 2ni. So r is the number of 
relevant symbols involving the odd primes. Call these the "odd" symbols. For 
the others, (f/4) (resp. (f/8)) is relevant if do > no +2 (resp. no + 3); (q$/4) 
(resp. (q/8) ) is relevant if do < 2no - 4 (resp. 2no - 5 ). 

Case I. If N and d are squares, then so are m and ju, so we have that 
h = 1 = a. Each mi and ,ui is even, so equation (6) becomes 

1 =-(-)((f/4)+1)((0/4)+1)/4 

By Lemma 1, neither m nor ,u can be odd, so condition (7) does not apply 
in this case. Equation (6) reduces to requiring only that (f/4) = 1 = (q/4). 
Otherwise, we see that the r odd symbols can be chosen independently, as can 
(f/8) and (q/8). So the number of possibilities for these choices is: 

2r if neither (f/8) nor (q/8) is relevant, 
2. 2r if only one of (f/8) and (q/8) is relevant, 
4 * 2r if both (f/8) and (q/8) are relevant. 

With the facts noted in the previous paragraph, and the fact that here no and 
do are both even, we get the result of the theorem. 

Case II. Suppose that N and d are not both squares. We can rewrite equation 
(6) as 

fdo-no (?> do k i) d,-n, (by d, 

(6) 8 8 1.~~~~~~~~~~= 1 

= (-1 )((fl4)+q)((q/4)+h)/4Q_ 1 )(h+l)(q+1)/4 

Note that if no and do are both even, then in this case we must have that ni 
or di is odd for some 1 < i < k. So then r > O, and it makes sense to speak 
of choosing r - 1 odd symbols in a particular way. (In all other cases, we do 
not assume that k > 0.) 
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(1) Let do = no - 2. Here, (X/4) is relevant, as is (q/8) if no > 3. 
Neither (f/4) nor (f/8) is relevant. In this case, m is odd, so we know that 
(q/4) = -h. Equation (6) becomes 

()nO j (f )dli (udi= (_l)(h+1)(q+1)/4 

i=1 

If no is odd, then we may choose the r odd symbols as we like; the value of 
(q/8) is then determined by this equation. If no is even, then the value of 
(Q/8) plays no part in equation (6). We can choose (q/8) and r - 1 of the 
odd symbols independently. The last odd symbol is then determined. So if 
no > 3, we have r independent choices for the relevant symbols, for a total 
of 2r possibilities. If no = 2, then there are 2r- 1 = 2r possibilities for the 
collection of genus symbols. 

The case in which do = 2no is the same (with f and q interchanged). 
(2) Let do = no. Here, (0/4) is relevant if no ? 4, (b/8) if no > 5. 

Neither (f/4) nor (f/8) is relevant. Equation (6) becomes 

(6a) 8(i) HO (41) ( =-) = ( _1)((f/4)+Q)(((/4)+h)/4(_1)(h+l)(v+1)/4v 

i=1 

Suppose first that no ? 4. If (q/4) = -h, then the right-hand side of equation 
(6a) is ( l)(h+1)(??+1)/4, which determines the left-hand side. As in subcase (1) 
above, we have r independent choices for (b/8) and the odd symbols. (Again, 
which ones we can choose depends on the parity of no.) On the other hand, 
if (0/4) = h, then the right-hand side is +(-l)(h+1)(n+1)/4 depending on the 
value of (f/4). We have r + 1 free choices for the odd symbols and for (0/8). 
((f/4) is then determined but is not relevant.) So if no > 5, then there is a 
total of 2r + 2r+1 = 3 . 2r possibilities for the relevant symbols. If no = 4, then 
(q/8) is not relevant, so the total number of possibilities is 2r-1 + 2r = 3 * 2r. 

Now if no <4, then neither (f/4) nor (q/4) is relevant. By choosing their 
values as we like, we have r free choices for the odd symbols. So there are 2r 
possibilities if no = 3 or no = 2. 

The case in which do = 2no - 2 is the same. 
(3) Let do = no + 1 . Here, (0/4) is relevant if no ? 5, (q/8) if no ? 6. 

Neither (f/4) nor (f/8) is relevant. Equation (6) becomes 

(f) nO+ 1 k f di-ni do 

(8i) (85) Pl+ k d) n (0-) d= (-_1 ) ((f/4)+1) ((+V4)+h)/4 ( _1 ) (h+ 1)(t?+ 1)/4 

By choosing (f/8) as we like, we have free choices for each of the relevant 
symbols. So the total number of possibilities is 2r+2 = 4 * 2r if no > 6, 
2r+1=2-2r if n0=5,and 2r if n0<4. 

The case in which do = 2no - 3 is the same. 
(4) Let do = no + 2. Now (f/4) is relevant, but (f/8) is not; (0/4) is 

relevant if no > 6, (q/8) if no > 7. Equation (6) becomes (6a) again. If 
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no > 6, then choose (f/4) and (q/4) independently. The left-hand side of 
equation (6a) is then determined. There are r free choices for (0/8) and the 
odd symbols. So if no > 7, then there is a total of 2r+2 = 4. 2r possibilities for 
the relevant symbols. If no = 6, there are 2 * 2r total possibilities. The cases 
in which no < 5 are already accounted for. 

The case in which do = 2no - 4 is the same. 
(5) Finally, let no + 3 < do < 2no - 5. Here, (f/4), (f/8), (q/4), and (q/8) 

are all relevant. Choosing (f/4) and (q/4) determines the left-hand side of 
equation (6). We can choose r + 1 of the remaining symbols freely. The total 
number of possible collections is 2r+3 = 8 * 2r. 

So the proof of Lemma 3 is complete. 0 

Notice that the number of genera of ternary forms of level N and discrim- 
inant d is positive in all cases listed. So the number of such classes must be 
positive as well. This proves the remark which concludes ? 1. 

With N given by equation (4), let q = 2qopql ... pqk with each qi equal to O 
or 1, and qo = 0 if no = 2. So q is a possible character for a ternary form of 
level N. We can now calculate gq (N) as 

gq(N) = ,g(N, d) = Zc 2, 
d d 

where c and r are as given in Lemma 3, and the sum is taken over all d, given 
by equation (5), for which sf(d) = q. A sum over all such d can be viewed as 
a sum over (k + 1)-tuples (do, d1, ... , dk) for which di qi (mod 2). 

Let ri be given as in the statement of Lemma 3. Then we have 

gq(N) =E C 2r = E C * 2r, .. .2rk 
d (do,..., dk) 

But c depends only on do (once it is determined whether Case I or Case II 
applies), while 2r' depends only on di. So we can see that 

gq (N) = 1: c * 1 2r, E 2rk 

do di dk 

Theorem 6. Let N be given by equation (4) and let q be a squarefree divisor 
of N/4. Let gq(N) be the number of genera of positive definite ternary forms 
having level N and character q. Then 

k 

gq(N) = CfJ(2ni), 
i=l1 

where C is a constant defined as follows: 

(I) If N is a square and q = 1, then 

if no = 2, 

C 2 if no = 4, 
C= S if no = 6, 

2(no - 4) if no^ > 8. 
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(II) If N is not a square or q :$ 1, then 

2 if no=2or 3, 

1 if no=4andq is even, 

C - 5 if no = 4 and q is odd, 

C 6 if no= 5, 
10 if no = 6 and q is odd, 

4(no - 4) if no = 6 and q is even, or if no > 7. 

Proof. In light of the remarks above, we need only show that 

Z2r = 2ni for i= 1, ...,k, and Zc=C. 
d, do 

For i = 1, ..., k, we will consider three cases: 
(i) If ni is even and qi = 0, then the possibilities for di are ni, ni + 

2, ..., 2ni - 2, and 2ni. Then ri = 1 for di = ni and di = 2ni, and ri = 2 
in all other cases. Notice that ni + 2 < di < 2ni - 2 for (ni - 2)/2 even values 
of di. Thus 

E 2r1 = 21 + ni - 2(22) + 21 = 4 + 2(ni - 2) = 2nd. 
d, 

(ii) If ni is even and qi = 1, then di = ni + 1, ni + 3, 2ni - I . There 
are ni/2 such values of di, and ri = 2 in each case, so 

2ri - (22) = 2ni. 

d, 

(iii) Suppose that ni is odd. If qi = 0, then di = ni + 1, ..., 2ni - 2, 2ni. 
If qi = 1, then di = ni, ni + 2, ... , 2ni - 1 . In either case, there is one value 
of di for which ri = 1 and (ni - 1)/2 values for which ri = 2. So 

/ 2r, = 21 + ni 2 (22) = 2 + 2(ni - 1) = 2ni. 

di 

Now let c be defined as in Lemma 3. 

Case I. Suppose that N is a square and that q = 1 (so that d is also a square). 
In particular, no and do are both even. If no > 8, then there are the following 
possibilities for do: no, no + 2, 2no - 4, 2no - 2, and for (no - 8)/2 values, 
no + 4 < do < 2no - 6. By Lemma 3, for the first four values, c = 2, and for 
the others, c = 4. So we have that 

C=2+2+2+2+ no 8(4) = 2(no-4). 
2 

For the other values of no, we have 

no= 6 d0 = 6, 8, or 10 = C= 2+1+2 = 5, 

no=4= do=4or6 CIC= 1+1=2, 

no =2 do = 2 C= 1. 

Case II. Suppose that N is not a square or that q :$ 1 (that is, N and d are 
not both squares). We consider three subcases here. 
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(i) Suppose that no and do are even, so that q is odd. If no > 8, then 
do = no - 2, no, no + 2, 2nO - 4, 2nO - 2, 2no, and for (no - 8)/2 values, 
no +4 < do < 2no - 6. Then by Lemma 3, 

C= 1+3+4+4+3+1+ ?2 (8)=4(no-4). 

Otherwise, we have 

no = 6 do = 4, 6, 8, 10, or 12 C = 1+3 +2+3+1 = 10, 

no = 4 =do = 2, 4, 6, or 8 C = I + 
3 

+ 
3 

+ I = 5, 
2 2 

1 1 
no=2 ?do=0, 2, or4 C= - + I + - =2. 

2 2 
(ii) Suppose that no is even, and do is odd, so that q is even. For no > 6, we 

have that do = no + 1, 2nO - 3, and for (no - 6)/2 values, no + 3 < do < 2no - 5. 
Then 

C = 4 +4+ n - 6 
(8) = 4(no - 4). 2 

If no = 4, then do = 5 is the only possibility, so C = 1 . 
(iii) Suppose that no is odd. We will assume that do is even; the case in 

which do is odd is similar. If no > 7, then do = no + 1, 2nO - 4, 2nO - 2, 
2no, and for (no - 7)/2 values, no + 3 < do < 2no - 6. So then, 

C = 4+ 4+ 3 + + no-7(8) = 4(no - 4). 

Otherwise, 

no = 5 do = 6, 8, or 10 C = 2+3+ 1 = 6, 
n0=3?3 d0=4or6 CRC= 1+1=2. 

This completes the proof of Theorem 6. 0 

General results concerning the values of cq (N) and Sq(N) are not apparent. 
However, combining the results of Theorems 4, 5, and 6, we can easily establish 
the following: 

Theorem 7. Let N be divisible by 4, and let Q = sf(N/4). Suppose that r is a 
squarefree divisor of N/4 and that gcd(r, Q) = 1. Then 

Cr(N) = crq (N) and sr(N) = srq (N) 

if q is any divisor of Q. 

In particular, if each prime in the unique factorization of N/4 appears with 
odd exponent, then the values cq(N) and sq(N) are independent of q. 

Using the ternary forms listed in Table 1 (see Supplements section), the au- 
thor has found bases for all spaces of cusp forms of weight 3/2, level N < 100, 
and quadratic character. However, for larger values of N, the quadratic form 
method will not suffice in this direct way for construction of such bases. Sup- 
pose that N = 4p for some prime p. (We restrict our attention to this case 
because then S312(N, X) does not contain any nontrivial subspaces of the form 
S312(M, X) with M < N.) It can be shown that 
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dim S/ (N { (P 
- 5)/4 if p 1 (mod 4), dimS312N, 

x)p=- 3)/4 if p 3 (mod 4) 

if N = 4p with p an odd prime, and X = XI or X = Xp [2, Theorem 2; 11, 
Theorem A]. 

In Table 2 in the supplement to this issue, we compare dimS3/2(N, Xq) 
with our calculation of sq(N) for each N < 4000 with N/4 prime. It is 
apparent that, for these values, Sq(N) does not increase as quickly as does 
dim S3/2(N, Xq). Thus, the question of how useful the quadratic form method 
is in constructing a basis for a space of modular or cusp forms remains unre- 
solved. 
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